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the survival of neuroblastoma patients
Dirk Fey,1 Melinda Halasz,1 Daniel Dreidax,2 Sean P. Kennedy,1 Jordan F. Hastings,3

Nora Rauch,1 Amaya Garcia Munoz,1 Ruth Pilkington,1 Matthias Fischer,4,5,6

Frank Westermann,2 Walter Kolch,1,7,8 Boris N. Kholodenko,1,7,8* David R. Croucher1,3,9*
http:/
D

ow
nloaded from

 

Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells.
Therefore, the dynamics of pathway activity may contain prognostically relevant information different from
that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we char-
acterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in
neuroblastoma cells. We generated an experimentally calibrated and validated computational model of
this network and used the model to extract prognostic information from neuroblastoma patient–specific
simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to
initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival
for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simu-
lations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting
information about a signaling pathway to develop a prognostically useful model requires understanding of
not only components and disease-associated changes in the abundance or activity of the components but
also how those changes affect pathway dynamics.
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INTRODUCTION

Traditional cancer biomarkers are based on an association between clinical
parameters and the expression or mutation of specific genes, often com-
bined into panels to strengthen their sensitivity and specificity. Although
these biomarkers have extensive clinical utility, they frequently lack any
mechanistic anchoring to the fundamental cellular processes responsible
for tumorigenesis or therapeutic response. Signaling pathways play a key
role in these processes; therefore, analysis of the activity of signaling path-
ways should aid in the development of biomarkers linked to cellular func-
tion. However, it is technically challenging to observe the activation of these
pathways during tumor formation or therapeutic treatment. We therefore
hypothesized that simulating the potential of cancer cells to activate a cen-
tral signaling pathway under these conditions may provide insight into the
prognostic information contained in these pathways.

Focusing on the c-Jun N-terminal kinase (JNK) pathway, because this
pathway mediates apoptotic cell death induced by both physiological
stress and therapeutic agents, we sought to develop a model of the JNK
pathway that could correlate patient-specific JNK response dynamics with
survival data. Although the identities of the kinases that activate JNK are
well known (1), this signaling pathway displays dynamic behavior suggestive
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of a complex network structure that belies a simple linear kinase cascade.
Systems-level approaches have previously revealed a complex network of
genes that influence basal JNK activity in migratory Drosophila cells (2),
but the biochemical mechanisms that govern apoptotic JNK activation are
still lacking. Here, we have delineated a network structure that regulates stress-
induced JNK activation in the childhood tumor neuroblastoma, which under-
goes JNK-dependent apoptosis in response to various stimuli (3–10).

The JNK pathway has a classical three-tiered mitogen-activated protein
kinase (MAPK) structure and, like all MAPK pathways, mediates diverse
cellular responses. The kinases in the MAPK cascade that activate JNK
are MKK4 and MKK7, which in turn are activated by various MAPK ki-
nase kinases (MAPKKKs) (1, 11). Growth factor–induced transient acti-
vation of JNK promotes cell survival and proliferation. This transient
activation of JNK exhibits a graded response to stimulus (growth factor)
concentration (12, 13). In contrast, stress-induced prolonged JNK activity
that results in apoptosis exhibits an ultrasensitive switch-like response
(12–15). Ultrasensitivity can result from positive feedback, and we previously
proposed a positive feedback loop between JNK and its upstream kinases
as a mechanism to achieve this ultrasensitive JNK activation (16).

Neuroblastoma originates from neural crest cells, typically arising in
the paravertebral sympathetic ganglia and adrenal medulla of young chil-
dren. Neuroblastoma patients are routinely classified into low-, intermediate-,
and high-risk groups according to disease stage, patient age, and MYCN
amplification status (17–19). Although considerable progress has been made
in improving survival rates for intermediate-risk patients, the overall sur-
vival rate for high-risk neuroblastoma patients remains less than 40 to
50% (18, 19). Amplification of the transcription factor MYCN occurs fre-
quently in high-risk neuroblastomas and drives aggressive tumor behavior,
resistance to chemotherapy (chemoresistance), and poor patient outcome
(19–21). However, many patients lackingMYCN amplification also have a
poor prognosis, and there is little understanding of the biochemical path-
ways that drive tumorigenesis and chemoresistance in these patients (22).
The JNK network structure in neuroblastoma is undefined.
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Here, we developed a dynamic mathematical model of the JNK net-
work on the basis of experimental evaluation of stress-induced JNK sig-
naling in SH-SY5Y neuroblastoma cells and used the model to generate
patient-specific simulations of stress-induced JNK activation. The results
revealed a central role for JNK signaling dynamics in neuroblastoma and
represent a model-based biomarker that robustly stratified neuroblastoma
patients across different individual molecular backgrounds.
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RESULTS

Ultrasensitive JNK activation and apoptosis in
neuroblastoma cells exposed to stress
Consistent with a tumor-suppressive role for JNK signaling in response to
stress within the tumor microenvironment, we observed that JNK inhibi-
tion increased tumor growth by about threefold in a zebrafish model of
MYCN-driven, spontaneous neuroblastoma (23) (Fig. 1A). This proapoptotic
role of JNK also occurred in the SH-SY5Y neuroblastoma cell line, in
which a JNK inhibitor dampened the apoptotic response to various stress
conditions (Fig. 1B) and significantly reduced stress-dependent p53 accu-
mulation and caspase-3 cleavage (fig. S1A) triggered by physiological or
drug-induced stress. We observed this reduction in apoptotic response in
SH-SY5Y cells using agents that inhibit protein translation (anisomycin)
to produce ribotoxic stress, inhibit mitochondrial function (rotenone) to
produce oxidative stress, cause DNA damage (doxorubicin) to produce geno-
toxic stress, or disrupt microtubules (vincristine) to cause cell cycle arrest
(Fig. 1B and fig. S1A). Two of these are drugs used for neuroblastoma
treatment: Doxorubicin is used to treat intermediate-risk neuroblastoma
patients, and vincristine is used in combination therapy for high-risk neuro-
blastoma patients (19).

To determine whether the apoptotic, ultrasensitive mode of JNK acti-
vation occurs in neuroblastoma cells, we exposed SH-SY5Y cells to in-
creasing concentrations of anisomycin for 30 min (Fig. 1C), which we found,
was the time point representing the maximal abundance of the phosphoryl-
ated and active form of JNK (fig. S1, B and C). The antibody used rec-
ognizes all three JNK isoforms JNK1, JNK2, and JNK3 (also called
MAPK8, MAPK9, and MAPK10) phosphorylated in the activation loop
(pJNKT184/Y185). Anisomycin induced ultrasensitive JNK activation, with
pJNKT183/Y185 increasing from basal to saturated amounts within one
order of magnitude change in anisomycin concentration. We explored
the response of two other MAPKs to anisomycin, the stress-activated ki-
nase p38 and extracellular signal–regulated kinase 1 (ERK1) and ERK2
(collectively referred to as ERK). In contrast to the change in the abun-
dance of pJNKT183/Y185, the abundance of activation loop–phosphorylated
p38 (pP38T180/Y182) increased over a broader concentration range, and the
weak increase in activation loop–phosphorylated ERK (pERKT202/Y204)
slowly approached saturation. The Hill exponent for JNK activation,
which quantifies the ultrasensitivity of the response, was greater than that
observed for either p38 or ERK activation (Fig. 1C). The abundance of total
JNK, p38, and ERK did not change under these conditions (fig. S1D).
Additionally, a p38 inhibitor had no effect on apoptosis induced under
any of the tested conditions (fig. S1E), indicating that switch-like activa-
tion in response to stress was a distinctive aspect of the apoptotic JNK
pathway in SH-SY5Y cells under these conditions.

Identifying the components of the JNK network in
neuroblastoma cells
The network structure that mediates this behavior of JNK is uncharacter-
ized in neuroblastoma but could arise through positive feedback from JNK
to upstream components of the pathway. To investigate the existence of
www.SC
JNK-mediated positive feedback, we experimentally disrupted that loop
using a JNK inhibitor and measured the activation loop phosphorylation
of MKK4 and MKK7 in response to increasing anisomycin concentration
(Fig. 1D). In the presence of a JNK inhibitor, activation of JNK and MKK7
(detected as the forms phosphorylated in the activation loops) by anisomycin
was significantly reduced and no longer resembled a high-amplitude ultra-
sensitive response, whereas the activation loop phosphorylation of MKK4
was less affected. The abundance of MKK4, MKK7, and JNK did not
change under these conditions (fig. S1D). We also observed similar changes
in response to anisomycin when the cells were exposed to the structurally
unrelated JNK inhibitor VIII (fig. S2A) or in cells exposed to the osmotic
stress agent sorbitol in the presence or absence of JNK inhibitor II (fig.
S2B). This positive influence of JNK activity on its own upstream kinases
conforms to our hypothesis of a JNK-mediated positive feedback loop that
is activated during cell stress.

To ascertain the contribution of MKK4 and MKK7 (1) to JNK activa-
tion in neuroblastoma cells, we individually knocked down MKK4 and
MKK7 by small interfering RNA (siRNA) and analyzed anisomycin-induced
JNK activation (fig. S2C). Under these conditions, MKK4 contributed
~30% of JNK phosphorylation and MKK7 contributed ~70%, with the
latter siRNA providing a similar amount of inhibition as direct JNK in-
hibition (compare fig. S2C and Fig. 1D, first graph).

To develop a model of the JNK network, we needed to identify the
MAPKKK upstream of MKK4 and MKK7. ZAK is an MAPKKK that
mediates anisomycin stimulation of the JNK pathway in other cell types
(24, 25). ZAK knockdown in SH-SY5Y cells inhibited the activation of
JNK, MKK4, and MKK7 by anisomycin and other stressors (Fig. 1E) but
did not alter the total amount of JNK, MKK4, or MKK7 (fig. S2D). Sta-
ble ZAK knockdown also increased the concentration at which 50% of the
cells died [median inhibitory concentration (IC50)]: ~3-fold for vincristine
and ~10-fold for doxorubicin (fig. S2E), further suggesting that the
ZAK-MKK4/MKK7-JNK signaling axis is central to the cytotoxic response
of neuroblastoma cells to therapeutic agents.

Scaffolding proteins, such as the JNK-interacting protein (JIP) family,
can contribute to switch-like JNK signaling through the colocalization of
MAPKKK-MAPKK-MAPK modules (26). However, we could not detect
JIP1 or JIP4 in SH-SY5Y cells, and knocking down JIP2 or JIP3 by siRNA
had no effect on anisomycin-induced JNK activity (fig. S3A). Although
we did not detect a role for the JIP scaffold family, we investigated protein-
protein interactions within this kinase network. ZAK can activate JNK
through both MKK4 and MKK7 (27). After activation, dimerization, and
autophosphorylation, ZAK interacts directly with MKK7 (28).

To test for protein interactions, we expressed tagged ZAK with either
tagged JNK2 or tagged MKK7 in SH-SY5Y cells. Although we coimmuno-
precipitated enhanced green fluorescent protein (EGFP)–tagged ZAK and
endogenous MKK7 (fig. S3B), MKK4 and EGFP-ZAK did not coimmuno-
precipitate (fig. S3B). JNK tagged with the V5 epitope coiummunoprecip-
itated with EGFP-ZAK (fig. S3C). Knockdown of MKK7 did not reduce
the coimmunoprecipitation of EGFP-ZAK and JNK-V5 (fig. S3D). JNK
docks to substrates by binding D domains. ZAK has many putative D do-
mains [based on the (K/R)1-3X1-6(L/I)X(L/I) consensus sequence for JNK
binding (29)], and one or more of these putative D domains may enable
ZAK to interact directly with JNK. Given that we did not detect any involve-
ment of JIPs, the coimmunoprecipitation data suggest the possibility that
ZAK may act as a scaffold for MKK7 and JNK.

Identifying positive feedback from JNK to MKK7
Because the known JNK scaffolds were not involved in JNK activation in
this system, we tested whether JNK-mediated feedback phosphorylation
of its upstream kinases was responsible for ultrasensitive JNK activation.
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We used MAPK substrate motif antibodies (pTP and PxpSP or pSPxR/K)
to investigate potential JNK-dependent phosphorylation events on MKK4,
MKK7, and ZAK by Western blotting. Indeed, EGFP-MKK4 and EGFP-
www.SC
MKK7 underwent anisomycin-stimulated and JNK-dependent phospho-
rylation at TP motifs, and MKK4 was also phosphorylated at PxSP or
SPxR/K motifs (Fig. 2A). The amount of ZAK phosphorylated at TP
β

Fig. 1. Ultrasensitive, apoptotic JNK signaling in neuroblastoma. (A) Analy-
sis of neuroblastoma growth in zebrafish, expressingMYCN-EGFP from the
dopamine b-hydroxylase promoter, in the presence of JNK inhibitor II
(5 mM, 14 days) or dimethyl sulfoxide (DMSO) control (mean ± SEM, n = 4).
**P < 0.01; *P < 0.05, two-sample Student’s t test). (B) Apoptosis of SH-SY5Y
cells (sub-G1 population) after treatment with anisomycin (300 nM), rotenone
(1000 nM), vincristine (100 nM), or doxorubicin (100 nM) for 24 hours, in
the presence or absence of JNK inhibitor VIII (10 mM) (mean ± SD, n = 3).
(C) Activation loop phosphorylation of JNK, p38, and ERK after treatment
of SH-SY5Y cells with increasing concentrations of anisomycin (3 to 1000 nM
for 30 min) (mean ± SD, n = 3). H, Hill exponent; CI, confidence interval.
(D) Activation loop phosphorylation of JNK, MKK4, and MKK7 after treat-
ment of SH-SY5Y cells as in (C) except in the presence or absence of JNK
inhibitor II (20 mM) (mean ± SD, n = 3). **P < 0.01; *P < 0.05, two-sample
Student’s t test. (E) Activation loop phosphorylation of JNK, MKK4, and
MKK7 after treatment of SH-SY5Y cells with control or ZAK siRNA for 48 hours,
followed by treatment with increasing doses of the indicated stimuli. Data
are representative of three experiments. In panels (C) and (D) quantified
data, phosphorylation is calculated relative to the maximal observed value
for each phosphosite.
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motifs was unaffected by anisomycin. Because the observed positive feed-
back loop appeared to act predominantly on MKK7 (Fig. 1D), we focused
on feedback phosphorylation of MKK7 by JNK. We mutated Thr66 and
Thr83 within TP motifs in MKK7 because they flank a D domain, through
which JNK docks to phosphorylate substrates (29). Both mutations signif-
www.SC
icantly impaired anisomycin-induced phosphorylation of MKK7 at TP
motifs, with the T66A mutation having a larger effect (Fig. 2B).

To further investigate the mechanism underlying this JNK-mediated
positive feedback, we used the murine MKK7b1 isoform, in which Thr66

and Thr83 are conserved, and the murine MKK7a1 isoform, which lacks
Fig. 2. Positive feedback in the JNK network. (A) Western blotting of immunoprecipitated (IP),
GFP-tagged ZAK, MKK4, or MKK7 transfected into SH-SY5Y cells, which were subsequently
treated with anisomycin (300 nM, 30 min) in the presence or absence of JNK inhibitor II.
Blotting was performed using MAPK substrate antibodies directed toward the PxSP_SPxR/K
or TP motifs or antibodies recognizing GFP. (B) Western blotting of immunoprecipitated,
GFP-tagged wild-type (WT) MKK7, MKK7T66A, or MKK7T83A transfected into SH-SY5Y cells
that were treated with anisomycin (300 nM, 30 min). (C) TP motif phosphorylation of immuno-
precipitated, FLAG-tagged murine MKK7b1 and MKK7a1 treated with anisomycin (300 nM,
30 min) in the presence and absence of SP600125 (JNK inhibitor II). IgG, immunoglobulin G.
(D) Activation loop phosphorylation of immunoprecipitated, V5-tagged WT MKK7, MKK7T66A,
or MKK7T83A transfected into SH-SY5Y cells that were treated with anisomycin (300 nM,
30 min). In panels (A), (B), and (D), quantification is from three independent experiments
(mean ± SD, n = 3). *P < 0.05; **P < 0.01, two-sample Student’s t test. Phosphorylation is
calculated relative to the untreated control sample, which was set at 1. (E) Analysis of the
coimmunoprecipitation of GFP-tagged ZAK and V5-tagged MKK7 (WT, T66A, and T83A) after
anisomycin treatment in SH-SY5Y cells. Data are representative of three XX experiments.
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the N-terminal region (Ala2-His88) that contains these feedback phospho-
sites. We confirmed that FLAG-tagged murine MKK7b1, but not MKK7a1,
was phosphorylated in a JNK-dependent manner in response to anisomycin
when expressed in SH-SY5Y cells (Fig. 2C). Mutation of Thr66, but not
Thr83, within MKK7b1 significantly reduced anisomycin-induced MKK7
activation loop phosphorylation (Ser271), confirming that this site consti-
tutes the positive feedback from JNK to MKK7 (Fig. 2D). In contrast, the
MKK7a1 isoform, which cannot undergo JNK-mediated feedback phos-
phorylation, displayed significantly increased basal activation loop phos-
phorylation, which did not change upon anisomycin treatment (Fig. 2D).
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Another possible mechanism for the
feedback could be an enhanced interaction
between ZAK and MKK7. However, the
coimmunoprecipitation between ZAK and
MKK7 was retained in the MKK T66A or
T83Amutants, indicating that feedback phos-
phorylation from JNK to MKK7 did not af-
fect the binding of MKK7 to ZAK (Fig. 2E).
These protein interaction data and the
phosphorylation analysis indicated that
the N-terminal region of MKK7 may be an
autoinhibitory domain and that inhibition is
relieved upon JNK-mediated phosphoryl-
ation, thereby providing a mechanistic basis
for the observed positive feedback loop with-
in the JNK network.

AKT-mediated crosstalk to JNK
Another network connection capable of
regulating JNK activation is AKT-mediated
inhibitory phosphorylation of MKK4 at
Ser80 (30). To explore the crosstalk be-
tween AKT and JNK signaling in SH-
SY5Y cells, we transfected a constitutively
active, myristoylated AKT1 (Myr-AKT1)
and examined the phosphorylation of the
kinases in the JNK pathway. Myr-AKT1
increased phosphorylation of MKK4 at
Ser80, correlating with the reduced activa-
tion loop phosphorylation of MKK4 and
JNK in response to anisomycin and vin-
cristine (Fig. 3A). Moreover, Myr-AKT1
also decreased the stress-induced activation
loop phosphorylation of MKK7.

To detect other AKT substrates in this
MAPK cascade, we cotransfected Myr-Akt1
and GFP-tagged MKK4, GFP-tagged MKK7,
or GFP-tagged ZAK; immunoprecipitated
the GFP-tagged proteins; and assayed the
proteins for phosphorylation with an anti-
body that recognizes the phosphorylated
AKT consensus site (RXRXXpS/pT or
RXXpS/pT) (Fig. 3B). Both MKK4 and
MKK7 exhibited increased phosphorylation
in cells cotransfected with Myr-AKT1 com-
pared with the amount in cells expressing
only the GFP-tagged kinase. However, phos-
phorylation of ZAKwas the same in cells co-
transfected with GFP-ZAK and Myr-AKT1
and in cells expressing only GFP-ZAK,
www.SC
indicating that phosphorylation recognized by this antibody was not mediated
by AKT. MKK7 does not contain any canonical RXRXXS/TAKT phospho-
rylation motifs; however, it does contain an RXXT motif (381RYET385), which
is sufficient for Akt-mediated phosphorylation of threonine (31). Mutation of
Thr385 to alanine resulted in the loss of AKT-mediated phosphorylation of
MKK7 (Fig. 3C), confirming that both MKK4 andMKK7 are AKT substrates.

Mathematical modeling of the JNK network dynamics
To generate quantitative predictions using this experimentally resolved
network structure, we built, calibrated, and validated a computational
Fig. 3. AKT inhibits JNK activation. (A) Western blotting of lysates from SH-SY5Y cells transfected with

Myr-AKT1 or a control plasmid and treated with anisomycin (300 nM, 30 min) or vincristine (100 nM,
1 hour). (B) Western blotting of immunoprecipitated, GFP-tagged ZAK, GFP-tagged MKK4, or GFP-tagged
MKK7 cotransfected into SH-SY5Y cells with Myr-Akt1 or a control plasmid. Blotting was performed using
antibodies specific for Akt substrate phosphorylation (RxRxxT/S_RxxT/S) or GFP. (C) Western blotting
of lysates and immunoprecipitated, GFP-tagged MKK7 or GFP-tagged MKK7T385A cotransfected into
SH-SY5Y cells with Myr-Akt1 or a control plasmid. Quantification is from three independent experiments
(mean ± SD, n = 3). *P < 0.05; **P < 0.01, two-sample Student’s t test. Phosphorylation was calculated
relative to the untreated control sample, which was set at 1.
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model of JNK network dynamics (Fig. 4A). This model is based on ordi-
nary differential equations (ODEs) and incorporates the following exper-
imentally confirmed features. First, stress activates ZAK, which activates
MKK4 and MKK7, which in turn activate JNK. Second, there is a positive
feedback from JNK to MKK7 and an inhibitory crosstalk from AKT to
MKK4 and MKK7. Third, ZAK functions as both a kinase and a scaffold
that binds MKK7 and JNK. The scaffold-mediated interactions, double
reversible phosphorylation cycles in the MAPK cascade, and AKT cross-
talk result in a combinatorial increase of feasible reactions and multiple
states of the JNK network kinases (32, 33). Therefore, we built the model
using rule-based modeling (34–37), which develops the ODEs on the
basis of a framework of rules describing the reactions and states of the
system. Constructed in this fashion, the model implemented 23 rules, which
resulted in 258 reactions and 36 parameters (table S1). The rule-based ap-
proach minimizes the number of necessary simplifying assumptions, and
although it increases the number of states and reactions, it does not in-
crease the number of parameters in the model.

To generate quantitative predictions, we calibrated the model using our
time course (fig. S1C), dose-response (Fig.1C), and MAPKK knockdown
data (Fig. 1E). We adjusted key parameters, such as the kinase activities
and feedback strengths, using a global parameter estimation method called
adaptive simulated annealing (38). To assess the associated uncertainty, we
adopted a Monte Carlo–based approach by randomly changing the initial
parameters 50 times and refitting the model (table S2 and text S1) (39, 40).
We then analyzed parameter correlations and variability of the simulated
predictions. Although parameter estimates have large SDs, the estimates
do not spread over the entire multidimensional space but occupy structured
regions where some parameter values are correlated (fig. S4, A to C). Al-
though exact parameter values cannot be identified, the predictions are ac-
curate and tight for all these estimates (Fig. 4C).

Experimental model validation
Model simulations performed to simulate the presence of a JNK inhibitor
recapitulated our experimental observations of a positive feedback loop, in
that blocking the positive feedback from JNK to MKK7 impaired the stress
response and its switch-like, ultrasensitive behavior (Fig. 4B, middle col-
umn). We further tested the predictive power of the model by examining
the potential scaffolding effect of ZAK (Fig. 4C, left), using an inde-
pendent validation data set (Fig. 4C, middle and right). Simulations pre-
dicted that ZAK overexpression would impair JNK activation because of
the inability of ZAK, when in excess, to simultaneously scaffold both
MKK7 and JNK. Additionally, these simulations predicted that ZAK over-
expression would further impair JNK activation after MKK4, but not
MKK7, knockdown. In support of our experimentally resolved network
structure, these model predictions were fully corroborated by experimental
analysis of anisomycin-mediated JNK activation after the simultaneous
overexpression of ZAK and knockdown of either MKK4 or MKK7
(Fig. 4C).

Initially, our model calibration and validation experiments were per-
formed in SH-SY5Y cells, using anisomycin as a stressor. We therefore
tested whether the model correctly predicted the JNK response to different
stress-inducing agents and in other neuroblastoma cell lines. To this end,
we measured the abundance of each kinase included in the model and the
phosphorylation of AktS473 in the SMS-KCN and IMR32 lines relative to
their amounts in the SH-SY5Y line (Fig. 4D, left). We then populated our
original model with these values as parameters, thereby generating three
cell line–specific models. Simulations predicted that the JNK response
would be markedly impaired in SMS-KCN cells and almost absent in
IMR32 cells (Fig. 4D, right). The predicted differences in the JNK path-
way activity (JNK activation loop phosphorylation) among the three cell
www.SC
lines in response to stress were confirmed experimentally for treatment
with vincristine (Fig. 4E), thus demonstrating that our model can be used
to simulate and correctly predict the JNK response in different neuroblas-
toma cell lines and across different stress stimuli. Furthermore, both the
observed and predicted JNK responses for each cell line were proportional
to the apoptotic response induced by vincristine (Fig. 4F), suggesting that
our model also has predictive power with regard to the biological response
of neuroblastoma cells to clinically relevant therapeutic agents.

Prognostic utility of the JNK model
On the basis of our combined experimental and modeling studies, we hy-
pothesized that a high-amplitude ultrasensitive JNK stress response would
promote apoptosis in neuroblastoma cells and would therefore be asso-
ciated with a better patient prognosis than a low-amplitude or gradual
JNK response. To test this hypothesis, we generated patient-specific
models by incorporating gene expression data from three cohorts of
primary neuroblastoma samples (table S3): a training cohort of 109 patients
and two independent validation cohorts of 369 and 233 patients. Although
the correlation between mRNA and protein abundance is weakly positive
on a global scale (41), our analysis of multiple data sets consistently
provided a strong correlation for all proteins in our model (fig. S5, A
to C). Indeed, each of the transcripts and proteins exhibited correlation
coefficients ≈0.6 and proportionality factors ≈1 (text S2 and tables S4
and S5). Therefore, we adjusted the protein concentrations in the model
for each patient according to the relative gene expression measured in the
tumor (fig. S6A, Fig. 5A, and fig. S7A); for example, if the tumor sample
showed a twofold increase in MKK4 mRNA, then we increased the abun-
dance of MKK4 by twofold in the model. Following this procedure for all
model components and for each patient resulted in personalized models
that incorporated protein abundance on the basis of the measured gene
expression of ZAK, MKK4, MKK7, JNK (average of MAPK8, MAPK9,
and MAPK10 probes), and AKT (average of AKT1 and AKT2 probes).

Having generated these personalized models of the JNK stress re-
sponse for each patient, we characterized these dynamic responses by
extracting three JNK network output descriptors: the maximal amplitude
(A), the activation threshold (K50), and the Hill exponent (H) (fig. S6, B
and C, Fig. 5, B and C, and fig. S7, B and C). Using these output descrip-
tors, an impaired ability to activate JNK corresponded to high values for
activation threshold and low values for maximal amplitude and Hill
exponent. Grouping these patient-specific simulations according to the In-
ternational Neuroblastoma Staging System (INSS) revealed increasingly
impaired JNK responses as the disease progressed (fig. S6, B and D,
Fig. 5, B and D, and fig. S7, B and D). This impairment was apparent from
the decreased mean response in higher disease stages, described by signif-
icantly decreased amplitude in stages 4 and 4S, significantly increased ac-
tivation threshold in stages 3 and 4, and a significantly reduced Hill
exponent in stage 4 and 4S.

To further examine the association between our model of JNK activa-
tion and disease progression, we stratified the patient population into two
groups according to their simulated JNK network output descriptors. To
identify the optimal cutoff values that best correlate or anticorrelate with
survival for each output descriptor, we applied Kaplan-Meier scanning
(42) to the training cohort (fig. S6E). Briefly, we sorted the patients ac-
cording to each output descriptor and started by putting 10% of patients
into the low group and 90% into the high group and then calculating the
log-rank test P value in iterative steps. In each step, the size of the low
group is increased by one patient. The best cutoff is the value of the output
descriptor with the lowest P value. This patient stratification process estab-
lishes the values that can be used to statistically significantly associate survival
with Hill exponent, maximal amplitude, or threshold for JNK activation.
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Fig. 4. Modeling of the JNK network dynamics. (A) Graphical representation
of the model as a limited process graph (for clarity, multiprotein complexes,

measurements (mean,n=3blots) of relative protein abundance, normalized
to actin. Unless marked by an arrow, all bands were used for quantification.
double-phosphorylation cycles, and multiple inhibitory forms are absent).
Asterisks (**) indicate double-phosphorylated, active forms of the kinases.
(B) Model fitting to experimental data. Lines show the average of model sim-
ulations for all 50 parameter estimates (mean ± SD, bold line and shaded
areas, respectively) and the best-fitting model (dashed lines). (C) Compari-
son of simulated (left) and observed (middle and right) anisomycin-induced
pJNKT183/Y185 in SH-SY5Ycells after knockdownofMKK4orMKK7andover-
expression of ZAK, as indicated. The arrow indicates the band specific for
MKK4.The threebands for JNK represent different splicing variants of JNK1,
JNK2, and JNK3; the intensities of all three bands were included for quanti-
fication. (D) Prediction of the stress-induced phosphorylation of JNK in the
indicated neuroblastoma cell lines. Left panel: Representative blots and
www.SC
Right panel: Simulated activation of JNK based on these parameters. (E) Ex-
perimental validationof thepredictedJNK responses inpanel (D). Left panel:
Activation loop phosphorylation of JNK in the three cell lines after vincristine
treatment (100 nM, 2 hours). Right panel: Linear correlation between pre-
dicted and observed pJNKT183/Y185, normalized to the loading control. The
small red dots represent the best-fitting model. (F) Linear correlation
(dashed line) between experimental (observed) or simulated (predicted)
pJNKT183/Y185 and apoptosis in response to vincristine (100 nM, 24 hours).
In panels (E) and (F), experimental data aremean±SD, n=3; simulations are
mean ± SD, n = 50. siContr., control siRNA; siMKK4 or siMKK7, siRNA for
MKK4 or MKK7; Ani, anisomycin; Unstim., unstimulated (not exposed to
stress-inducing drug).
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Plotting the corresponding Kaplan-Meier survival curves showed a signif-
icant association between poor patient survival and low amplitude, low
Hill exponent, or high threshold of JNK activation (fig. S6E). We then
applied the same cutoffs to the independent validation cohorts and found
www.SC
the same association between an impaired JNK response and poor overall
survival (Fig. 5E and fig. S7E). Notably, the Hill exponent, which mea-
sures the ultrasensitivity of the JNK response, provided the most accurate
patient stratification. These results suggest that impairment of the JNK
Measured mRNA expression levels in tumor samples (log2 scale)
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Fig. 5. Patient-specific

simulations and model-
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Heatmap representing
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blastomapatients. Each
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onepatient. (B)Simulated
JNK stress response
for each individual pa-
tient using the data in
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nent (H). (D) Distribution
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output descriptors for
the different stages.
(E) Model-based Kaplan-
Meier survival analysis
for the entire cohort of
369 patients. Toppan-
el: Scanning for thebest
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optimized cutoff de-
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statistical significance
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stress response, resulting from alterations
in the concentration of kinases within the
JNK network, contributes to a negative out-
come for neuroblastoma patients.

JNK network alterations induced
upon MYCN amplification
Because MYCN is the major oncogene
driving neuroblastoma (19), we hypothe-
sized that MYCN-amplified tumors may
have altered JNK stress response dynam-
ics. Inspection of each kinase in our model
revealed that the most prominent changes
inMYCN-amplified tumors were decreased
MKK4 and increased ZAK and AKT (Fig. 6A),
all of which would be expected to impair
JNK responses according to our model and
experimental observations. Indeed, model
simulations showed that MYCN-amplified
patients exhibited markedly impaired JNK
responses when compared to patients with-
out MYCN amplification, with significant
alterations in all three output descriptors
of the JNK network (Fig. 6, B and C). These
coordinated changes in the transcripts for
the JNK network kinases and their associ-
ation with MYCN amplification suggest
that an impaired JNK response may be char-
acteristic of MYCN-amplified tumors and
may contribute to the innate chemoresistance
associated with this aggressive form of neuro-
blastoma (19, 43).

Despite this potential for MYCN to
drive changes that impair the JNK response,
a substantial number of patients lacking
MYCN amplification also exhibited an im-
paired JNK response in our simulations.
We therefore asked whether our model
could also predict possibleMYCN-independent
effects on overall survival by performing sur-
vival analysis for the non–MYCN-amplified
and MYCN-amplified groups separately.
Under these conditions and considering P <
0.01 significant, only the Hill exponent was
significantly associated with overall surviv-
al for both the MYCN-amplified and non–
MYCN-amplified patients when using cutoffs
derived from the calibration cohort (Fig. 6D
and fig. S8, A and B). However, when the
optimal cutoffs were reevaluated for each
subcohort (MYCN-amplified and non–MYCN-
amplified) separately, all calculated net-
work output characteristics of an impaired
JNK response were significantly associated
with poor patient survival in the nonampli-
fied cohort (fig. S8A). ForMYCN-amplified
patients, the Hill exponent was significantly
associated with poor survival (fig. S8B), and
the amplitude (P = 0.026) came close to
reaching our significance threshold (P < 0.01).
Cut off from
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Fig. 6. MYCN-associated changes and MYCN-independent effects. (A) Distribution of measured mRNA
abundance for JNK network components within the non–MYCN-amplified (0) and MYCN-amplified (1) co-
horts (**P < 0.001; *P < 0.05, two-sample Student’s t test). (B) Individual simulated stress responses (thin
lines) for both cohorts and the corresponding mean responses (thick black lines). (C) Box plots and group
differences for the simulated network output descriptors calculated from (B). (D) Model-based Kaplan-
Meier survival analysis for the non–MYCN-amplified andMYCN-amplified cohort. See Fig. 5E for a descrip-
tion of all elements.
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Thus, our modeling approach has confirmed that an impaired JNK response
is significantly associated with poor survival in bothMYCN-amplified and
non–MYCN-amplified cases.

We further tested whether using the model improves the current prog-
nostic understanding based on well-established markers, such as MYCN
status, age, and stage (INNS) or risk [Children’s Oncology Group (COG)].
Using several Cox proportional hazard analyses correcting for each
marker in different combinations, we found that the dynamic model re-
liably contributed to predicting the overall survival (Table 1). Individually
as independent variables in a univariate analysis, maximal amplitude, Hill
exponent, and threshold for JNK activation all significantly predicted
overall survival. When combined with other markers in multivariate anal-
ysis, only maximal amplitude and Hill exponent, but not activation thresh-
old, were independent prognostic indicators.

Robustness of the JNK dynamics and
prognostic predictions
To determine whether the network model increased the amount of obtain-
able information or merely identified useful individual biomarkers, we
compared the prognostic utility of the individual model components to
that of the network-based model. Performing survival analyses on each
model component in isolation revealed significant associations between
overall survival and the expression of ZAK, MKK4, AKT (P < 0.00001),
and JNK (P < 0.01), but not MKK7 (P ≈ 0.05) (fig. S9A). In the cohort
without MYCN amplification, increased ZAK and decreased MKK4 were
significantly associated with poor overall survival (P < 0.01) (fig. S9B). In
the MYCN-amplified cohort, no single model component was significantly
associated with survival (fig. S9C). MKK7 (P = 0.02443) replaced MKK4
(P = 0.03742) as the most useful individual prognostic indicator in MYCN-
amplified patients.

MKK4 showed the strongest correlation with overall survival and was
more significantly associated with poor overall survival than our modeling
analysis in the whole patient cohort. We therefore investigated the con-
tribution of MKK4 to our modeling analysis in more detail. A sensitivity
analysis of the model confirmed that changing the concentration of MKK4
markedly affected the JNK response (Fig. 7A). Although MKK7 and JNK
were the most sensitive parameters with respect to equally sized perturba-
tions (Fig. 7A, left, and fig. S10A), MKK4 was the most sensitive when
the perturbation size was corrected for the variability observed in the tu-
mor data (Fig. 7A, right) and had the predominant effect on shaping both
the JNK time course and dose response (fig. S10B). This finding suggests
that although MKK4 does not play a dominant role within this network
structure, the abundance of MKK4 in the tumors is more markedly altered
than that of the other model components. Accordingly,MKK4 contributed
independently in a multivariate Cox regression analysis using MYCN
www.SCI
amplification, age, and all kinases in the model as covariates (Table 2).
However, whereas MKK4 expression was associated with survival in the
whole patient cohort, when analyzing only MYCN-amplified or high-risk
patients, the model outperformed the predictive capabilities of MKK4
(Fig. 6B). Indeed, in theMYCN-amplified cohort, the model outperformed
the predictive capacity of any of the individual components in the model
(compare Fig. 5D and fig. S9C).

These cohort-specific associations suggest that placing these individual
signaling pathway components into their network context is a necessary
step for obtaining personalized simulations that can deliver robust predic-
tions against different molecular backgrounds. This importance of network
wiring was particularly highlighted by performing the patient simulations
after removal of the positive feedback from within our model (fig. S10C).
This analysis resulted in a substantial decrease in the heterogeneity of the
simulated patient responses for both the amplitude and Hill exponent (Fig.
7C) and a complete loss of the prognostically relevant variability across
the disease stages for the K50 values and the Hill exponent (Fig. 7D). The
loss of stage-specific variation in JNK ultrasensitivity is of particular note
given that the Hill exponent provided the most accurate stratification of the
MYCN-amplified cohort. Further, it suggested that the JNK-MKK7 positive
feedback enhances the overall impact of small alterations on the abundance
of network components, thereby boosting the dynamic network response
and leading to the generation of biologically meaningful response changes
that ultimately influence patient survival.

DISCUSSION

Our experimental characterization and personalized modeling of stress-
induced JNK activation highlights the central role of JNK signaling in
neuroblastoma patient outcome. The identification of major genetic altera-
tions in JNK network components in breast and pancreatic cancer (44–46)
further suggests that preventing JNK activation is a vital step during tumor
progression and may ultimately be achieved through diverse mechanisms.
Here, we identified mechanisms through which alterations in the transcript
abundance and, thus, protein abundance of JNK network components re-
sult in impaired ultrasensitive JNK activation in neuroblastoma cells. The
importance of these mechanisms is also supported by other studies that iden-
tified the ZAK-MKK4/MKK7-JNK module as a crucial mediator of
apoptotic signaling in multiple cell types (24, 25, 47). Indeed, studies have
implicated the off-target inhibition of ZAK by inhibitors of the MAPKKK
BRAF as a mechanism of chemoresistance in BRAF-mutant melanoma
cells (48, 49).

The importance of adopting a modeling approach when investigating
the connections within a signaling network and the implications for disease
is highlighted by the prognostic significance of the patient-specific simulations
Table 1. Cox proportional hazard analysis of overall survival
using the JNK output descriptors as key independent variables.
Univariate analysis was performed using a Cox proportional hazard
model with either A, K50, or H as an independent variable. Multi-
variate analysis was performed using a Cox proportional hazard
model with the indicated variables measured at the time of ad-
mission or surgery as covariates in addition to either A, K50, or H. b
is presented as the maximum likelihood estimate ± SE. Risk is
defined by COG. MYCN indicates positive or negative for MYCN
amplification.
Univariate analysis
 Multivariate analysis adjusted for:

Risk
ENCESIGNALING.org 22 December 2
MYCN (INNS, age)
b
 P
 b3
 P
 b
015 Vol 8 Issue 408 ra130
P

A
 −2.55 ± 0.479
 1.01×10−7
 −1.18 ± 0.485
 0.015
 −1.12 ± 0.524
 0.032

K50
 0.0058 ± 0.0021
 6.77×10−3
 −0.0006 ± 0.0026
 0.818
 0.0014 ± 0.0027
 0.596

H
 −1.27 ± 0.23
 3.46×10−8
 −0.658 ± 0.228
 0.0039
 −0.63 ± 0.234
 0.007
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from tumors with MYCN amplification. In
this cohort, the simulation of JNK activa-
tion was significantly associated with over-
all survival, whereas none of the survival
analyses performed with individual model
components reached significance. Further
refinement of this patient-specific model-
ing approach could certainly be achieved
by using protein-based data [for example,
reverse-phase protein array (RPPA)], par-
ticularly regarding the inclusion of direct
measurements of AKT phosphorylation.
However, the ability of the model to achieve
prognostic significance based on simula-
tions performed using gene expression data
lends credence to the strength of this mod-

eling approach and is also more practical for clinical application because
mRNA expression analysis is more common than RPPA.

The identification of a positive feedback loop from JNK to MKK7,
facilitating the switch-like activation of JNK in our model, provides a
potential mechanism for many experimental observations of ultrasensitive
JNK activation (12, 14, 15). Additionally, the combination of this positive
feedback and patient-to-patient variation in the expression of transcripts
www.SCI
encoding the JNK network components also underpins the prognostically
significant heterogeneity in the patient-specific simulations JNK activation.
So far, it has been unclear how quantitative changes in expression might
contribute to response variability, cell fate, and survival because small
changes might be statistically significant but not biologically meaningful.
Here, we demonstrated that many small changes distributed across the ki-
nases within the JNK pathway synergize to evoke biologically meaningful
With positive feedback Without positive feedback Relative change
SD MEAN CV SD MEAN CV Change CV

P value

Change SD

A: 0.3482 0.7999 0.4353 0.2359 0.3306 0.7136 64% –32%
K: 45.1785 152.8572 0.2956 48.3195 179.0011 0.2699 –9% 7%
H: 0.8673 3.4272 0.2531 0.3172 2.5834 0.1228 –51% –63% 
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Fig. 7. Robustness of the JNK dynamics.

(A) Sensitivity analysis and perturbation
analysis of the JNK network. (Left) The ef-
fect on JNK activation of a onefold perturba-
tion in the concentration of each kinase in
the model. (Right) The effect of perturbing
the kinase concentration according to the
measured variation within the tumor data.
For each kinase, the SD in the tumor data
was calculated, and the amount of the cor-
responding component in the model was
increased (Up) or decreased (Down) by
twice that value. Perturbation values are in-
dicated in parentheses after the name of
each kinase. (B) Receiver operating charac-
teristic (ROC) analysis to determine the pre-
dictive quality of the model, MYCN status,
or abundance of MKK4. The patient outcome
(death or survival) was predicted using the
simulated H from the model or the measured
MYCN mRNA or MKK4 mRNA expression.
The resulting true-positive rate (y axis) was
plotted against the false-positive rate (x axis).
AUC denotes the area under the curve.
(C) Distribution of the network output de-
scriptors across the whole cohort (n = 369)
with and without positive feedback from
JNK to MKK7. (D) Distribution of the net-
work output descriptors across the disease
stages, performed without positive feed-
back in the model (**P < 0.001; *P < 0.05,
two-sample Student’s t test). Pos. FB, posi-
tive feedback; No FB, no feedback; CV, co-
efficient of variation defined as the SD
divided by the mean.
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response differences that translate into differences in patient survival.
Small variations at the level of gene expression are enhanced at the level
of pathway activation by the positive feedback that we identified within
the JNK pathway. The response heterogeneity introduced by the positive
feedback from JNK to MKK7 contrasts with the related ERK pathway, in
which negative feedback from ERK to RAF-1 increases robustness to per-
turbations and fluctuations in protein abundance (50, 51). These findings
highlight the vital role of compiling detailed information about network
wiring in the development of computational models of signaling path-
ways. Even highly related pathways are not necessarily wired in a similar
fashion, and any assumptions need to be carefully validated to derive bio-
chemically correct and clinically relevant information.

Computational modeling has already provided an understanding of the
dynamics of signaling pathways (16, 52–54). Here, we showed that mod-
eling approaches can be used not only to decipher and understand the
behavior of complex networks on the cellular level but also to relate
biochemical pathway behavior to clinical outcomes on the level of indi-
vidual patients. The simulation of patient-specific apoptotic JNK network
responses provides an important proof of principle for the potential prog-
nostic utility of experimentally resolved models of signaling networks, as
opposed to biomarkers that lack this detailed mechanistic anchoring.
The crucial advantage of a mechanistic model in this setting is that it
can be quickly adapted to compare and predict the efficacy of different
therapeutic agents once their mode of action has been determined.
 22, 2015
MATERIALS AND METHODS

Study design
This study used the SH-SY5Y, SMS-KCN, and IMR32 neuroblastoma
cells lines to generate, calibrate, and validate a mathematical model of
stress-induced JNK signaling. Patient-specific simulations of JNK signal-
ing were performed using three existing independent patient cohorts (55).
The training cohort included 109 international patients, the first validation
cohort included 369 German patients, and the second validation cohort
included 233 international patients (table S3).

For the training cohort, patients’ age at diagnosis ranged from 3 days
to 293 months (median age, 12.7 months), median follow-up for patients
without fatal events was 5.4 years (range, 0.2 to 18 years), and 5-year
overall survival was 0.63 (95% CI, 0.53 to 0.73). For the German valida-
tion cohort, patients’ age at diagnosis ranged from 0 to 295 months (median
age, 13.2 months), median follow-up was 3.4 years (range, 0 to 16 years),
and 5-year overall survival was 0.80 (95% CI, 0.75 to 0.86). For the sec-
ond validation cohort, patients’ age at diagnosis ranged from birth to
304 months (median age, 17 months), median follow-up for patients
www.SCI
without fatal events was 4.5 years (range, 0.02 to 24 years), and 5-year
overall survival was 0.73 (95% CI, 0.67 to 0.80). Stage was classified
according to the INSS, and risk according to the COG system.

Antibodies, plasmids, and stress-inducing reagents
Antibodies specific to total JNK (#9258), MKK4 (#9152), MKK7
(#4172), pJNKT183/Y185 (#9251), pERKT202/Y204 (#4370), pP38T180/Y182

(#4511), pMKK4S257/T261 (#9156), pMKK4S80 (#9155), pAktS473 (#4060),
pMAPK substrate antibodies T*P (#9391) and PxS*P_S*PxR/K (#2325),
pAkt substrate RxRxxT/s, RxxT/S (#9614), and cleaved caspase 3 (#9664)
were from Cell Signaling. The pMKK7S271 (TA312581) antibody was from
OriGene. The GFP monoclonal antibody (11814460001) was from Roche.
The antibodies toward ZAK (sc134970), p53 (sc126), JIP1 (sc25267), JIP2
(sc53553), and JIP4 (sc271491) were from Santa Cruz Biotechnology. The
JIP3 antibody (NBP1-00895) was from Novus Biologicals. The actin mono-
clonal antibody (AC-15) and FLAG-M2 antibody were from Sigma-Aldrich.
The GAPDH (ab8245) and MKK4 (ab33912) antibodies were from Abcam.
The V5 monoclonal antibody (R960-25) was from Life Technologies.

The pDONR223-MKK7 construct (56) was a gift from W. Hahn and
D. Root (Addgene plasmid 23798). The pDONR201-MKK4 construct
(HsCD00000136) (57) was obtained through DNASU (58). The pDONR-
ZAK construct (GC-X0399-CF) was purchased from GeneCopoeia. Cloning
of these donor cDNAs into 223 pCS EGFP and pcDNA6.2 V5 destination
plasmids was performed using the Gateway LR Clonase enzyme mix (Life
Technologies) according to the manufacturer’s instructions.

JNK inhibitor II (SP600125) was from Merck, and JNK inhibitor VIII
was from Cayman Chemical. Anisomycin, sorbitol, rotenone, vincristine,
and doxorubicin were from Sigma-Aldrich. Anisomycin dose responses
were performed using 3, 10, 30, 100, 300, and 1000 nM anisomycin for
30 min. Sorbitol dose responses were performed using 10, 30, 100, 300,
500, and 1000 nM sorbitol for 1 hour. Rotenone dose responses were
performed using 3, 10, 30, 100, 300, and 1000 nM rotenone for 1 hour.
Vincristine dose responses were performed using 3, 10, 30, 100, 300, and
1000 nM for 2 hours. Doxorubicin dose responses were performed using
1, 3, 10, 30, 100, and 300 nM for 4 hours.

Zebrafish model of neuroblastoma
The transgenic Tg[dbh:MYCN-EGFP] zebrafish linewas a gift fromA. T. Look
(Dana-Farber Cancer Institute, Harvard Medical School) (23). Zebrafish
experiments were approved by the University College Dublin Animal Re-
search Ethics Committee and the Healthcare Products Regulatory Authority
(AE18982/P038).

Adult Tg[dbh:MYCN-EGFP] zebrafish (Danio rerio) were maintained
at 28°C on a 14-hour light/10-hour dark cycle and monitored for fluores-
cent tumor masses every 2 weeks. About 20% of fish develop tumors by
~8 months (23). Zebrafish developing the fish-equivalent of human neu-
roblastoma (age, 15 months; n = 4) were treated every 48 hours with JNK
inhibitor II (5 mM) or DMSO control for a total of 2 weeks. Variance in
tumor size for all fish at pretreatment was <5%. Zebrafish were anesthe-
tized by 0.016% tricaine before microscopic analysis. An Olympus SZX10
fluorescence stereomicroscope equipped with an Olympus DP71 camera
was used to capture images. The fluorescent region posterior to the gills,
which corresponds to the region of neuroblastoma growth (23), was ana-
lyzed using ImageJ software (version 1.44p).

Cell lines
The SH-SY5Y, SMS-KCN, and IMR-32 neuroblastoma cell lines have been
described previously (59). These cell lines were cultured in standard RPMI
1640 (containing D-glucose at 2 g/liter) under standard tissue culture
conditions (5% CO2, 20% O2).
Table 2. Multivariate Cox regression analysis. A Cox proportional
hazard model was used to analyze the overall survival for the entire
cohort of all patients.
Covariate
 b ± SE
 P
Age
 0.000441 ± 0.000075
 0

MYCN
 0.182 ± 0.078
 0.02

ZAK
 0.655 ± 0.248
 0.008

MKK4
 −0.759 ± 0.218
 0.001

MKK7
 −0.021 ± 0.535
 0.969

JNK
 0.482 ± 0.57
 0.398

AKT
 0.522 ± 0.522
 0.318
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Site-directed mutagenesis
Site-directed mutagenesis of MKK7 was performed using the QuikChange
Lightning Site-Directed Mutagenesis Kit (Agilent) according to the manu-
facturer’s instructions. The following primers were used for human MKK7:
T66A forward primer, 5′-gcagcaccccgcgccccccgc-3′, and T66A reverse primer,
5′-gcggggggcgcggggtgctgc-3′; T83A forward primer, 5′-catgctgcggggt-
gcgaacagggttgacg-3′, and T83A reverse primer, 5′-cgtcaaccctgttcgcacc-
ccgcagcatg-3′; T385A forward primer, 5′-caagcgctacgaggcgctggaggtgga-3′,
and T385A reverse primer, 5′-tccacctccagcgcctcgtagcgcttg-3′. The following
primers were used for murine MKK7: T66A forward primer, 5′-ccacagca-
ccctgcaccccccaccc-3′, and T66A reverse primer, 5′-gggtggggggtgcaggg-
tgctgtgg-3′; T83A forward primer, 5′-gctcccatcaaccttgttcgcaccgcgcagtat-3′,
and T83A reverse primer, 5′-atactgcgcggtgcgaacaaggttgatgggagc-3′.

siRNA and shRNA
The MKK4 (L-003574-00-0005), ZAK (L-005068-00-0005), JIP1 (L-003595-
00-0005), JIP2 (L-012462-00-0005), JIP3 (L-003596-00-0005), JIP4
(L-017462-00-0005), and negative control (D-001810-10-05) ON-TARGETplus
SMARTpool siRNAs were from Thermo Fisher. The MKK7 Silencer Se-
lect siRNA (s11184) was from Ambion. Transfection of siRNA was per-
formed using the jetPRIME reagent (Polyplus Transfection) according to
the manufacturer’s instructions. The pLKO control short hairpin RNA
(shRNA) and pLKO ZAK shRNA (clone name: NM_016653.x-362s1c1)
plasmids were gifts from W. Gallagher (Conway Institute, University Col-
lege Dublin). Plasmid transfection was performed using the jetPRIME re-
agent (Polyplus Transfection) according to the manufacturer’s instructions,
and stable cell line selection was performed with puromycin (2 mg/ml).

Western blotting and immunoprecipitation
Lysates for Western blotting and immunoprecipitation were prepared using
normal lysis buffer [10 mM tris-HCl (pH 7.5), 140 mMNaCl, and 1% Triton
X] containing protease inhibitor cocktail (p8340, Sigma) and PhosSTOP
Phosphatase Inhibitor Cocktail (Roche). Immunoprecipitation was per-
formed using either GFP-Trap_A (Chromotek), V5 monoclonal antibody–
coupled agarose beads, or FLAG-M2–coupled magnetic beads (Sigma)
as indicated. SDS–polyacrylamide gel electrophoresis (SDS-PAGE) electro-
phoresis and Western blotting were performed using the NuPAGE SDS-
PAGE gel system and NuPAGE Bis-Tris Precast Gels (10% and 4 to
12%) (Life Technologies). SuperSignal West Femto Chemiluminescent
Substrate (Thermo Scientific) was used to develop Western blots, which
were imaged using an Advanced Molecular Vision chemiluminescence
imaging system. Quantitative Western blotting was performed using multi-
strip Western blotting (60).

Cell-based assays
Apoptosis was measured by propidium iodide staining and flow cytometric
analysis to identify the sub-G1 population, as previously described (61).
Analysis was performed using an Accuri C6 flow cytometer (BD). Cyto-
toxicity assays were performed using the CellTiter 96 AQueous One So-
lution Cell Proliferation Assay according to the manufacturer’s instructions
(Promega).

Dynamic modeling
On the basis of the experimentally resolved network structure depicted in
Fig. 4A, a dynamic model was constructed by rule-based modeling (34),
which develops the ODEs based on a framework of rules describing the
reactions and states of the system. The modeling is described in detail in
text S1. An extended contact map provides a graphical representation of this
rule-basedmodel (fig. S11). A full account of all rules, equations, and param-
eters is provided in table S1. The model was implemented in MATLAB
www.SCI
using the PottersWheels toolbox, which was also used for parameter esti-
mation using adaptive simulated annealing as an optimizer. Table S2
contains the parameter estimation results for all 50 independent parameter
estimation runs. The effect of violating critical model assumptions was
also analyzed (fig. S12).

Measuring mRNA expression in neuroblastoma
tumor samples
Sample set composition, sample preparation, and generation of single-color
gene expression profiles from primary neuroblastomas were described
previously (62).

Kaplan-Meier survival analysis
The best cutoff for stratifying the patient population into low and high
groups was identified in the training cohort (109 patients) by scanning
the group sizes from 10-90 to 90-10 percent splits, where 10-90 means
that 10% of the patients were in the low group and 90% of the patients
in the high group, and calculating the P value for the overall survival dif-
ference between the groups using a log-rank test with Yates’ correction.
These optimized cutoff values were then applied to the independent valida-
tion cohort (369 patients). Additionally, the optimal cutoffs were also re-
derived in the validation set for the separate non–MYCN-amplified and the
MYCN-amplified analysis. All statistical computations and Kaplan-Meier
analyses were performed in MATLAB using the statistics toolbox and the
log-rank (www.mathworks.com/matlabcentral/fileexchange/22317-logrank)
and kmplot (www.mathworks.com/matlabcentral/fileexchange/22293-
kmplot) functions from the MATLAB file exchange. Multivariate survival
analysis is described in text S3.

SUPPLEMENTARY MATERIALS
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Text S1. Dynamic modeling of the JNK network.
Text S2. Rationale for using measured mRNA abundances as proxy for protein abundances.
Text S3. Multivariate survival analysis.
Fig. S1. Stress-mediated apoptotic JNK activation.
Fig. S2. Network structures mediating stress-induced JNK activation.
Fig. S3. Detailed wiring of the JNK network.
Fig. S4. Parameter estimation results.
Fig. S5. Correlation between mRNA and protein measurements.
Fig. S6. Patient-specific simulations and model-based stratification in the training cohort.
Fig. S7. Patient-specific simulations and model-based stratification in the second validation
cohort.
Fig. S8. Model-based survival analysis for the non–MYCN-amplified and MYCN-amplified
cohorts.
Fig. S9. Survival analysis performed using individual model components.
Fig. S10. Robustness of the JNK dynamics.
Fig. S11. Graphical representation of the rule-based model in terms of an extended contact
map.
Fig. S12. The effect of violating critical model assumptions.
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